

Published on Web 03/21/2003

Direct Sulfonation of Methane to Methanesulfonic Acid with SO₂ Using Ca Salts as Promoters

Sudip Mukhopadhyay and Alexis T. Bell*

Department of Chemical Engineering, University of California, Berkeley, California 94720

Received August 16, 2002; Revised Manuscript Received February 18, 2003; E-mail: bell@cchem.berkeley.edu

Selective catalytic functionalization of methane to value-added products is a subject of considerable contemporary interest.¹ While many authors have investigated the oxidation and oxidative carbonylation of methane,² the sulfonation of methane has not received as much attention despite its commercial importance.³ The current commercial process for the synthesis of methanesulfonic acid (MSA) occurs via the chlorine-oxidation of methylmercaptan.⁴ While this process is highly productive, it produces six moles of HCl per mole of MSA, resulting in a coupling of the demand for the primary product and the byproduct. There, therefore, is an incentive to identify a direct route for methane sulfonation with SO₃ or SO₂. Sen and co-workers⁵ and more, recently, we⁶ have shown that K₂S₂O₈ can be used as a free radical initiator to sulfonate methane with SO₃ in fuming sulfuric acid. The same approach, however, does not work if SO₂ and O₂ are used instead of SO₃. While Ishii and co-workers have reported success in the vanadiumcatalyzed sulfonation of adamantane to the corresponding sulfonic acids using SO₂ and O₂, methane did not undergo sulfonation to MSA.⁷ The question therefore arises as to whether K₂S₂O₈ might not be used as an effective source of oxygen for the sulfonation of methane with SO₂, since Fujiwara and co-workers have shown that CaCl₂ can be employed as an initiator for the carbonylation of methane in trifluoroacetic acid in the presence of K₂S₂O₈.⁸ In this communication, we show that methane will undergo liquid-phase sulfonation to MSA with SO₂ in triflic acid, with K₂S₂O₈ serving as the oxidant and Ca salts as the promoter. To the best of our knowledge, this is the first example of the liquid-phase sulfonation of methane utilizing SO_2 as the sulfating agent.

In a typical reaction, CH_4 and SO_2 were reacted in triflic acid in a high-pressure, glass-lined autoclave.⁹ K₂S₂O₈ and a catalytic amount of a Ca salt (or salts of other metals) were added to the liquid phase. Reactions were carried out for 10 h, and the MSA thus formed was identified and quantified by ¹H NMR.⁶ Since SO₂ is the limiting reagent, conversions are reported on the basis of SO_2 and defined as the ratio of the moles of SO_2 converted to MSA to total moles of SO_2 taken initially. No other byproducts were detected.

Table 1 shows the effect of different promoters on the SO₂ conversion to MSA after 10 h. Almost no MSA is detected in the absence of a promoter. The chloride salts of K, Mg, Ba, and Pd are only minimally effective in promoting the formation of MSA, as compared to CaCl₂ (Table 1, entries 1-6). The anion associated with Ca also affects the conversion of SO₂ to MSA (Table 1, entries 7-14). CaF₂ is completely inactive, and CaBr₂ and CaI₂ are significantly less effective than CaCl₂. Ca(OCl)₂ and Ca(CF₃COO)₂ are moderately effective, but Ca(CH₃COO)₂ and CaSO₄ are completely inactive. While CaO₂ is an active promoter, only 8% of the SO₂ is converted to MSA.

The use of HCl together with CaO_2 increased the conversion of SO_2 to MSA. A maximum SO_2 conversion to MSA of 14% was achieved when the ratio of HCl to CaO_2 was increased to 2.5. When KCl was used in combination with CaO_2 , only a 7% conversion of SO_2 to MSA was observed. On the other hand, addition of approximately 2.5 psig Cl_2 gas into the system together with CaO_2 resulted in a maximum 15% SO_2 conversion to MSA (Table 1, entry 19).

Table 2 shows the effects of reaction conditions on the conversion of SO₂ to MSA after 10 h of reaction time. The conversion increased from 0 to 14% when the amount of CaCl₂ in the reaction mixture was raised from 0 to 0.6 mmol. However, a further increase in the amount of CaCl₂ resulted in a decrease in the conversion to MSA. With 0.6 mmol CaCl₂ when the reaction was performed for 26 h, 22% SO₂ conversion to MSA was observed. On the basis of K₂S₂O₈, the conversion of SO₂ to MSA was 58% (Table 2, entries 1–6).

The reaction rate also depends on the amount of $K_2S_2O_8$ in the reaction mixture (Table 2, entries 7–10). Increasing the amount of $K_2S_2O_8$ from 0 to 5 mmol, increased the conversion of SO₂ to MSA from 0 to 14%, but increasing the amount of oxidant further

Table 1. Effect of different promoters on the rate of sulfonation of methane^a

	1								
entry	promoter	promoter, mmol	MSA, mmol	% conv. of SO_2 to MSA	entry	promoter	promoter, mmol	MSA, mmol	% conv. of SO_2 to MSA
1	None	0	tr	tr.	10	Ca(CF ₃ COO) ₂	0.6	0.26	2
2	KC1	0.6	0.13	1	11	CaI ₂	0.6	0.4	3
3	MgCl ₂	0.7	0.4	3	12	CaBr ₂	0.6	0.66	5
4	BaCl ₂	0.7	0.26	2	13	CaSO ₄	0.7	0	0
5	PdCl ₂	0.5	0.26	2	14	CaO_2	0.6	1.05	8
6	CaCl ₂	0.6	1.84	14	15	CaO ₂ /HCl ^b	0.6	1.44	11
7	$Ca(OCl)_2$	0.6	0.52	4	16	CaO ₂ /HCl ^c	0.6	1.71	13
8	$Ca(CH_3COO)_2$	0.7	0	0	17	CaO ₂ /HCl ^d	0.6	1.84	14
9	CaF ₂	0.6	0	0	18	CaO ₂ /KCl ^e	0.6	0.72	7
					19	CaO ₂ /Cl ₂	0.6	1.97	15

^{*a*} Reaction conditions: methane, 1000 psig (268 mmol); SO₂, 35 psig (13.14 mmol); molar ratio of methane to SO₂, 20.4; K₂S₂O₈, 5 mmol; triflic acid, 5 mL; time, 10 h; temperature, 65 °C. ^{*b*} Molar ratio of HCl to CaO₂, 1. ^{*c*} Molar ratio of HCl to CaO₂, 2. ^{*d*} Molar ratio of HCl to CaO₂, 2.5. ^{*e*} Molar ratio of KCl to CaO₂, 1. ^{*f*} Molar ratio of Cl₂ to CaO₂, 3.

Table 2. Effect of Reaction Conditions on the Sulfonation of Methane to MSA^a

entry	CH ₄ psig	SO ₂ psig	$K_2S_2O_8$ mmol	CaCl ₂ mmol	T°C	MSA mmol	% conv. of SO_2 to MSA	entry	CH ₄ psig	SO ₂ psig	$K_2S_2O_8$ mmol	CaCl ₂ mmol	T°C	MSA mmol	% conv. of SO_2 to MSA
1	1000	35	5	0	65	tr	tr.	13	1000	35	5	0.6	75	1.57	12
2	1000	35	5	0.4	65	0.79	6	14	1000	35	5	0.6	85	1.18	9
3	1000	35	5	0.6	65	1.84	14	15^{c}	200	35	5	0.6	65	0.92	7
4^b	1000	35	5	0.6	65	2.89	22	16	600	35	5	0.6	65	0.26	2
5	1000	35	5	0.9	65	1.57	12	17	800	35	5	0.6	65	0.78	6
6	1000	35	5	1.8	65	1.18	9	18	1200	35	5	0.6	65	2.1	16
7	1000	35	0	0.6	65	0	0	19	1200	0	5	0.6	65	0	0
8	1000	35	1.9	0.6	65	0.39	3	20	1000	10	5	0.6	65	0.53	4
9	1000	35	3.7	0.6	65	1.314	10	21	1000	20	5	0.6	65	1.18	9
10	1000	35	6.3	0.6	65	0.91	7	22	1000	25	5	0.6	65	1.57	12
11	1000	35	5	0.6	45	tr	tr.	23	1000	30	5	0.6	65	1.84	14
12	1000	35	5	0.6	55	0.79	6								

^a Reaction conditions: time, 10 h; solvent, triflic acid, 5 mL. ^b Time, 26 h. ^c Time, 72 h.

resulted in a decrease in MSA formation and the detection of a small amount of methytriflate. The observed decrease in the yield of MSA above an initial $K_2S_2O_8$ loading of 5 mmol is possibly due to the release of O_2 , which, as discussed below, would inhibit the reaction.

The extent of SO₂ conversion observed in 10 h increased with increasing temperature up to 65 °C. However, a decrease in the conversion to MSA was observed for temperatures above 65 °C (Table 2, entries 11-14).

The conversion of SO₂ to MSA increased from 2 to 14% after 10 h of reaction when the methane pressure was increased from 600 to 1000 psig, but reached a plateau at 1000 psig. The reaction proceeds well even with 200-psig methane pressure. Thus, 7% conversion of SO₂ to MSA was observed after 72 h (Table 2, entries 15-18).

The reaction rate is also a function of SO_2 partial pressure. No MSA was detected in the absence of SO_2 . This confirms that the source of SO_2 is neither $K_2S_2O_8$ nor the solvent triflic acid. At a SO_2 pressure of 10 psig, only 4% conversion to MSA was achieved. However, at 25 psig, a 12% conversion was achieved and at 30–35 psig, a 14% conversion was obtained (Table 2, entries 19–23).

Solvent composition had a marked influence on the rate of MSA formation. For the typical reaction conditions, a 2% conversion of SO_2 to MSA was found as well, using H_2SO_4 as the solvent.⁹ However, in trifluoroacetic acid, 4% conversion of SO_2 to MSA was attained, and in triflic acid the conversion rose to 14%.

The mechanism of MSA formation from CH₄ and SO₂ is not known; however, it is reasonable to propose that the reaction involves free radical processes, inasmuch as it was observed that O₂ inhibits MSA formation. At least three possible initiators can be identified, each of which could react with CH₄ to produce CH₃• radicals. These include SO4- radical anions, formed via the decomposition of K₂S₂O₈, OH• radicals, produced by the decomposition of H₂O₂ produced in situ via the reaction of K₂S₂O₈ and the acid solvent, and Cl• radicals, produced via the oxidation of Cl⁻ anions. Only OH• and Cl• radicals are thought to play a significant role in the initiation process, since Table 1 shows that, in the absence of CaCl2 or a mixture of CaO2 and HCl, no MSA is formed. The results presented in Table 1 also suggest that Ca2+ cations are more effective than other divalent cations in promoting in situ formation of H₂O₂ and its subsequent decomposition to form OH• radicals. The CH3• radicals once formed could react subsequently with SO₂, K₂S₂O₈, and methane to form MSA as suggested by Ishii and co-workers in the sulfonation of adamantane.⁷

The reason for the observed decrease in the conversion of SO_2 to MSA when more than 0.9 mmol of $CaCl_2$ is used in the synthesis mixture is not understood. Since the solubility of $CaCl_2$ in triflic acid is limited, a plateau in the conversion level should have been observed. The observed lowering in the conversion to MSA when

more than 6.3 mmol of $K_2S_2O_8$ is used can be attributed to the high rate of formation of O_2 , which can act as a free radical scavenger,⁵ thereby inhibiting the formation of MSA. This interpretation is consistent with the failure to observe any MSA when the reaction was carried out with 2-atm O_2 pressure in the autoclave.

In conclusion, we have demonstrated a synthetic approach for the direct, liquid-phase sulfonation of methane with SO₂. Under the best reaction conditions, 22% conversion of SO₂ to MSA was achieved after 26 h of reaction. For this case, 58% of the $K_2S_2O_8$ was consumed. Efforts are now in progress to develop a catalytic process scheme to sulfonate methane with SO₂ in which molecular O₂ is used as the oxygen source instead of $K_2S_2O_8$.

Acknowledgment. This work was supported by a grant from Atofina Chemicals, Inc.

References

- (a) Hill, C. L. Activation and Functionalization of Alkanes; Wiley: New York, 1989. (b) Axelrod, M. G.; Gaffney, A. M.; Pitchai, R.; Sofranko, J. A. Natural Gas Conversion II; Elsevier: Amsterdam, 1994; p 93. (c) Starr, C.; Searl, M. F.; Alpert, S. Science 1992, 256, 981. (d) Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes; D. Reidel, Dordrecht, 1984. (e) Olah, G. A.; Molnar, A. Hydrocarbon Chemistry; Wiley: New York, 1995. (f) Lin, M.; Sen, A. Nature 1994, 368, 613. (g) Sen, A. Acc. Chem. Res. 1998, 31, 550. (h) Labinger, J. A. Fuel Process. Technol. 1995, 42, 325. (i) Crabtree, R. H. Chem. Rev. 1995, 95, 987. (j) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. (k) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (l) Gesser, H. D.; Hunter, N. R. Catal. Today 1998, 42, 183.
- (2) (a) Chepaikin, E. G.; Bezruchenko, A. P.; Leshcheva, A. A.; Boyko, G. N.; Kuzmenkov, I. V.; Grigoryan, E. H.; Shilov, A. E. *J. Mol. Catal. A: Chem.* **2001**, *169*, 89. (b) Periana, R. A.; Taube, D. J.; Evitt, E. R.; Loffer, D. G.; Wentreek, P. R.; Voss, G.; Masuda, T. *Science* **1993**, *259*, 340. (c) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science **1998**, *280*, 560.
- (3) (a) Ullmann's Encyclopedia of Industrial Chemistry; VCH: Weinheim, 1994; Vol. A25, pp 503–506. (b) Beringer, F. M.; Falk, R. A. J. Am. Chem. Soc. 1959, 81, 2997. (c) Young, H. A. J. Am. Chem. Soc. 1937, 59, 811. (d) Murray, R. C. J. Chem. Soc. 1933, 739.
- (4) (a) Kroschwitz, J. I.; Howe-Grant, M. Kirk Othmer Encyclopedia of Chemical Technology; Wiley: New York, 1991. (b) Guertin, R. U.S. Patent 3,626,004, 1971.
- (5) Basickes, N.; Hogan, T. E.; Sen, A. J. Am. Chem. Soc. 1996, 118, 13111.
- (6) (a) Lobree, L. J.; Bell, A. T. Ind. Eng. Chem. Res. 2001, 40, 736. (b) Mukhopadhyay, S.; Bell, A. T. Ind. Eng. Chem. Res. 2002, 41, 5901.
- (7) Ishii, Y.; Matsunaka, K.; Sakaguchi, S. J. Am. Chem. Soc. 2000, 122, 7390.
- (8) Asadullah, M.; Kitamura, T.; Fujiwara, Y. Angew. Chem., Int. Ed. 2000, 39, 2475.
- (9) In a 100-mL glass-lined Parr autoclave, 5 mmol (1.4 g) K₂S₂O₈, 0.6 mmol (0.07 g) CaCl₂, and 5 mL of triflic acid were charged together with a small Teflon coated magnetic stir bar. The reactor was then purged with N₂ to expel the air out of the system. It was then pressurized first with 35 psig SO₂ (13.14 mmol) and then finally with 1000 psig methane (268 mmol) from the adjacent connecting cylinders. The reactor was then heated to 65 °C under stirring and kept at that temperature for 10 h. After the stipulated period of time, the reactor was quenched with ice and opened to collect the reaction mixture. The mixture then added slowly to 0.6 g of water and then taken for ¹H NMR analysis. D₂O and methanol was used in a capillary as the lock references. The corresponding chemical shifts for MSA were 2.78–3.02 ppm, depending on the concentration of MSA in the mixture.

JA0281737